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Abstract. The following paper offers a comprehensive literature review of recent
advancements and trends in the manipulation of deformable objects by robotics
systems focusing as much as possible on the interaction between humanoid
robotics and this type of objects. The paper boards different fields such as
deep learning, traditional deformable object understanding, representations and
handling, as well as the role that context awareness and multi-sensory data plays
in the understanding of these objects. The explored works span a period around
the last 30 years in order to get the most complete possible understanding.
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1 Introduction

As a field of artificial intelligence, computer vision empowers computational systems
to derive meaningful insights from digital images, videos, and other visual inputs,
culminating in informed decision making [18]. This process frequently involves
utilization of image processing techniques to aid in the interpretation of intricacies of a
3-D world from time varying 2-D data.

By allowing systems to perceive and understand their environment, computer vision
paves the way for crucial applications in diverse sectors such as robotics, medicine,
computer graphics and autonomous vehicles. Humanoid robotics consists of a field of
study that aims to develop robots that mirror the structure and behavior of the human
body, allowing them to function autonomously in environments designed for humans.

Fundamental concepts related to it include bipedal locomotion, balance control and
complex motor functions that involve a blend of perception, decision-making, and
execution. By integrating technologies from different domains such as mechanics,
electronics and computer science, humanoid robots are designed to perform tasks
such as walking, climbing stairs, or object manipulation, replicating human agility
and dexterity.

Incorporating computer vision significantly enhances the capabilities of humanoid
robots, enabling them to perceive and interact with their environment in a more refined
way. It is particularly relevant to consider the tracking and manipulation of deformable
or flexible objects, which represents an intricate challenge due to their geometries and
material properties.
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As the complexity of the geometry of an object and material properties increase,
traditional computer vision techniques can often fail to deliver to the desired
accuracy and robustness. The following text offers a comprehensive literature review
focused on how modern computer vision strategies tackle these difficulties, exploring
advancements in deep learning techniques that have enhanced tracking performance of
flexible objects.

With an emphasis on the integration of object recognition and depth perception
algorithms, this literature review intends on delving into the processes that enable
precise, real-time tracking of these complex targets. The intersection of depth
perception and object recognition forms a robust basis for the analysis of non-rigid
objects, despite their inherent complexities.

Context-awareness also emerges as a significant aspect in the development of
sophisticated computer vision algorithms. Incorporating contextual understanding
allows humanoid robots to improve their interaction with deformable objects,
facilitating more reliable tracking and manipulation.

Finally, this review presents an overview of how multi sensory data integration can
augment the information gathered by computer vision techniques. Techniques to fuse
data from different sensors are explored, such as tactile sensors, with visual data to
enhance tracking and manipulation accuracy, particularly in complex environments.

Overall, this literature review aims to provide a thorough insight into the
state-of-the-art in computer vision for flexible object tracking, focusing on the latest as
well as the most significant advancements, challenges, and promising avenues for future
research. The structure of the review will be based on the following research questions:

1. What unique challenges are presented by flexible object tracking for humanoids and
how can computer vision effectively address these difficulties?

2. What are the advancements in deep learning techniques and how they can enhance
the performance of vision-based tracking of flexible objects for humanoid robots?

3. How can object recognition and depth perception algorithms be integrated for
precise real-time tracking of flexible objects?

4. What is the role of context-awareness in computer vision algorithms for improved
tracking and manipulation of flexible objects by humanoid robots?

5. How can data from other sensors be integrated with computer vision to increase the
accuracy of flexible object tracking and manipulation in complex environments?

2 Background and Historical Development

The first computer vision experiments begin in the 1960s with the experiments
done by PhD. Lawrence Roberts, known as the father of computer vision. In his
PhD Thesis for MIT many of the bases for computer vision techniques being
used today were developed [36]. In this thesis, he managed to make a computer
create a 3-D representation of solid objects in a photograph via the use of image
transformations. The work done by Roberts establishes the foundations for future 3-D
object recognition and tracking.
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Throughout the 1980s and 1990s, deformable models were introduced. This
advancement would prove fundamental for tracking deformable objects. Deformable
models applicable to 2-D objects were introduced by Kass et al. as explicit deformable
contours in 1988. In this early exploration, deformable contours were known as snakes,
which are considered as an energy minimizing spline guided by external constraint
forces and influenced by image forces that pull it towards features such as lines
and edges [19].

Snakes are active contour models, locking into nearby edges and localizing
them accurately. These deformable models were later generalized to work in 3-D
by Terzuopolos et al. [43], their work on dynamic analytical models initiated the
physically based deformable models. These models aimed to represent the physical
properties and behavior of materials realistically, using principles from mechanics,
physics, and biology.

In 1999, the Scale-Invariant Feature Transform (SIFT) algorithm was introduced
by Lowe [28]. The main purpose of this algorithm is to extract information from
features that are invariant to image scale and rotation, providing robust matching
across a substantial range of distortion, noise or change in viewpoint. Applications of
the SIFT algorithm include object tracking and recognition, 3-D reconstruction, and
augmented reality.

Variations of the SIFT algorithm have also been utilized in the recognition of
deformable objects. In [52], Zickler, S. et al. present an algorithm that utilizes
PCA-SIFT in a combination with a clustered voting scheme. This model achieves
detection and localization of multiple, highly deformable objects in real-time
video footage.

Spanning the 2010s, the rise of deep learning methods saw a wide utilization
of these methods in computer vison. Clear examples of these can be seen via
the use of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), particularly Long Short-Term Memory (LSTM) models being used for object
recognition and tracking over time. This technology has been utilized in robotics-related
tasks such as classification of slip occurrences by recognizing instances of objects being
handled as well as their properties [24, 27, 51].

The main purpose behind this sort of application being object classification. Entering
the 2020s, attention mechanisms and transformers which originated in the field of
Natural Language Processing have been adapted for computer vision and robotics tasks.
Interesting advancements have been made, such as in [40] were the authors proposed a
Transformer framework for tabletop tasks encoding language goals and RGB-D voxel
observations, outputting discretized 6-DoF actions.

The work done by Yunhai H. et al. [15] is also really promising regarding the
utilization of deep learning-related models in tasks related to deformable object
manipulation in robotics by utilizing a transformer-based robotic grasping framework
for rigid robotic grippers that leverage tactile and visual information for safe grasping.
The Transformers involved learn physical feature embeddings with sensor feedback
predicting a grasping outcome via the use of a multilayer perceptron (MLP).
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3 Flexible Object Tracking Challenges

The understanding and tracking deformable objects in real time applications would
broaden the range of applications for robotics systems in areas such as surgery,
household robotics, manufacturing, and those mentioned in previous sections.

A complete understanding of these objects is yet to be achieved, mainly due to
their complex nature. Thus, representing, understanding, and manipulating deformable
objects in robotics remains an open challenge, which has itself given rise to other
significant challenges such as detecting the elasticity and plasticity of objects and
manipulation planning and control.

Most of the work involving robotic manipulation tends to focus on working with rigid
objects [7]. In [5] Billard et al. attribute this to the fact that flexible materials like fruits,
vegetables and clothing have varied sizes, weights, and superficial properties, with
manipulations that involve deformation being difficult due to the need for an accurate
model that represents them. In most interactions, rigid objects are expected to keep
their characteristics such as shape intact, with any forces applied to them represented as
a series of rigid body transformations.

Conversely, deformable objects experience changes in their shape after a force
is applied to them, with the degree of deformation and motion resulting from an
interaction being dependent on the material composition of the object, making the
physics of the deformation process hard to capture. Dynamics models have been utilized
for high-fidelity mechanical modelling, however the information required to make these
models is not always present for robotics systems in the real world [3].

All these factors combined with the fact that deformable objects can potentially
have an infinite number of degrees of freedom due to their continuous nature [9],
have resulted in current attempts of modelling, understanding, and tracking deformable
objects being application specific [3]. On the vision front, the understanding of
deformable objects is also made difficult because several elements in an image can
increase the difficulty of detecting these objects throughout a sequence of frames.

Lighting conditions, background noise, and especially occlusion combined with
the variety of appearances that a deformable object might have make it a significant
challenge. Historically, these issues (especially occlusions) have been faced by
complementing vision models with physics simulations, such as in [34] [42]. However,
these approaches also suffer from needing a physical model which might not always be
available. The uncertainty regarding the shape of the object also makes the task difficult
since estimating all possible shape changes of an object is not easy with shape changes
often being unpredictable.

Real-time processing of tasks involving deformable object tracking with computer
vision remains a major challenge [25]. The complexity comes from the high
dimensionality of deformable objects, needing to repetitively compute changes in the
state of the object within a short time span. Obtaining results in a quick manner
necessitates a trade-off between accuracy and speed. While training data exists for
solutions that utilize artificial intelligence models [24] it is still relatively limited,
mainly because, it is never possible to consider all deformations for the objects in
a set [6].
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This compounded by the fact that deformable objects are very diverse with
individuals within groups of deformable objects presenting unique deformations.
Learning models expected to work with deformable objects require a good capacity for
generalization. Manipulation, planning, and control while handling deformable objects
is also a significant challenge. Traditional planning and control techniques applied with
rigid objects are not applicable [3].

The high dimensionality and non-linear nature of flexible objects requires the
development of specialized case specific techniques, such as in [8, 47]. Significant
strides continue to be made in the field; however, a long road still lies ahead. The
challenges mentioned throughout this section are a reminder of the need for
continuous research and development related to tracking and manipulation of these of
objects. Upcoming sections will delve into some of the most promising advancements
in the field.

4 Deep Learning Techniques for Object Tracking

The recent boom in machine learning that began in the latter part of the 2010s gave
way to important developments in the realm of deep learning. Some of the most
notable advancements include Convolutional Neural Networks [16, 13], Recurrent
Neural Networks [32], Generative Adversarial Networks [10], Deep Reinforcement
Learning [46] as well as Transformers and Attention Mechanisms [11].

Although these deep learning technologies were originally intended to be used with
certain types of tasks in mind such as computer vision or natural language processing,
the field of robotics has managed to adapt part of these technologies for tasks relevant
to it. Convolutional Neural Networks have had a major role in expanding tracking
capabilities in robotics systems.

For instance, in [29] the research team utilized a hierarchy of deep convolutional
neural networks to categorize deformable objects as well as recognizing their pose. The
framework used by the team utilizes two distinct CNN layers, the first one is used for
classifying a certain garment based on predefined categories.

Meanwhile, the second layer consists of a category specific CNN to perform pose
estimation, with the team testing their approach not only in simulations, but also with
an actual robotic platform. In their implementation, the deformable garments are hung
from a point to have a recognizable starting shape for the deformable object. The task
of interacting with garments in a certain state is applicable in the industry while also
being a desirable skill for future service robots.

The proposed pipeline achieved a recognition rate of 89.38 percent, outclassing
state-of-the-art methods at the time of its release. Deep learning methods are making
important contributions to the field of humanoid robotics. One notable study [50]
outlines a novel approach for creating a humanoid robot capable of functioning in a
manufacturing setting. This approach considers four principles for the robot and the
algorithm: the ability to execute tasks, refine performance through repetition, adapt to
new situations, and be easily implemented in real-world settings. Data for training is
initially gathered through teleoperation.

21

Understanding and Tracking of Deformable Objects in the Context of Humanoid ...

Research in Computing Science 152(12), 2023ISSN 1870-4069



The study employs a two-stage deep learning model, where a Deep Convolutional
Autoencoder (DCAE) is responsible for image feature extraction and reconstruction,
while a Time-Delay Neural Network (TDNN) learns the task dynamics based on
these features and robot motion data. Since CNNs can handle considerably more
input dimensions than fully connected neural networks with less parameters decreasing
training time and enhancing the performance for image processing tasks such as
feature or edge extraction on images, they present a solid alternative when working
with vision tasks.

With a trained DCAE, half of the structure of the model is dedicated to encoding
(compressing) the information to small-dimension image features which can represent
the state of an input image and provide high-resolution input information in less
dimensions, with batch normalization being used in the process to reduce the possibility
of overfitting. The second half of the model is used to decode (reconstruct) the
information to extracted image features.

The other neural architecture is the Time-Delay Neural Network (TDNN) [23].
TDNNs are designed to work with data that has a temporal component, making them
ideal for tasks like sequence reconstruction. In [50], researchers employed a TDNN
with multiple layers to generate continuous sequences by dynamically adjusting the
input window over time.

This real-time adjustment is made possible by continuously feeding the network
with new sensory and motor data, such as images captured by a camera and robot arm
movements. The TDNN model in this study was capable of learning from multiple
sensory-motor signal inputs, with the features extracted from the DCAE and robot
motions being used by it. The experimental setup included a robot equipped with two
6-DOF non-back-drivable arms and a camera for precise manipulation.

Non-supervised learning has also been utilized to a great extent in relation to robotics
and deformable object manipulation. For instance, in [31], the research team utilized a
reinforcement learning approach to attempt to instruct a robot arm on how to interact
with a deformable object in the form of cloth, considering actions such as diagonal
folding, hanging, and folding the cloth up to a mark.

This was done utilizing a reinforcement learning technique known as Deep
Deterministic Policy Gradients from Demonstrations (DDPGfD) [44], which is an
extension of a prior algorithm known as Deep Deterministic Policy Gradients (DDPG)
[26]. DDPG is a popular deep reinforcement learning technique used for solving
continuous action space problems, meaning that the possible actions the agent can take
exist in a continuous domain.

DDPGfD improves upon the original method by encouraging behavioral cloning,
meaning that the agent that undergoes the reinforcement learning is rewarded by
following a set of predetermined observations provided by an expert system. This helps
mitigate usual reinforcement learning hassles such as slow convergence or having vast
differences throughout iterations due to each of these iterations being conformed by
random actions. The research team in charge of this study utilized the approach in
both simulated and real-world environments, having a success rate of 90 percent when
dealing with diagonal cloth folding in simulations while scoring a 66.6 percent grasp
accuracy in the real world.
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Transformer models carry with them great amounts of potential being capable
of learning the data they are given in an intricate manner thanks to their attention
mechanisms, which allow for models to focus on specific features of the input data
that have a high relevance for the task at hand. In [15], the research team utilized
the robotics specific transformer models TimeSformer [4] and ViViT [2] for the task
of predicting slip detection when robotics systems handle fruits (deformable objects)
which is relevant to factory and service robotics, outperforming models that made use
of a CNN + LSTM pipeline that utilized Resnet18 [17].

The TimeSformer model works by processing spatial-temporal dimensions
sequentially. The attention is applied first in the temporal dimension of the inputs at the
same spatial position. Since these transformers work with computer vision tasks, the
input image is dismantled into patches which are later flattened then linearly embedded
to vectors of a certain size with positional embedding being added to each of them
with a classifying token designed to extract task-level representations by tending to
all other vectors. From there an input matrix is obtained and fed into a series of
transformer layers.

The output of the classifying token is then used by a variety of tasks. The ViViT
transformer works similarly to the TimeSformer model with a few key differences. For
instance, ViViT processes the involved dimensions in parallel with half of the heads
attending the spatial dimension and the other half the temporal dimension. The outputs
are later combined via concatenation adding a linear transformation to half the size. It
also has no need for a classification token, instead, the average of all output patches from
the last Transformer layer is obtained passing it to a Multi-Layer Perceptron network
(deep learning network used for classification) to predict a slip detection.

5 Integration of Object Recognition and Depth
Perception Algorithms

Having a robotics system be capable of performing object recognition as well as having
a certain ability to understand its environment via depth perception can be extremely
beneficial towards working with deformable objects. Earlier research regarding the
topic would utilize the extraction of visual features, such as silhouette features
[22, 48, 21], however new more diverse approaches have been implemented partly
thanks to the existence of low-cost RGB-D cameras.

These cameras provide both color (RGB) and depth information (D), enabling robots
to better understand their environment in three dimensions. The two main currents
regarding deformable object recognition tend to identify the object either when it is
on a table [49, 41, 35] and those that recognize it when the object in question is hanging
from a gripper [22, 12].

When the classification is done with the object on a table, it can be done with a
single image, which is known as single shot perception. However, the scores obtained by
single shot perception are usually outmatched by approaches where the robotics system
interacts with the deformable object, gaining more information about the topology and
deformations present in that object. In some instances, a 3-D model that comes because
of the volumetric features in 3-D images.
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Table 1. Data in the table is sourced from the original articles. Entries marked with ”NA” indicate
that the information was not reported in the original study. The abbreviation ”FF” stands for
Feed-Forward, used in the context of neural network-based methods.

Category Method Year Accuracy Inference Time

Deep Learning

Inception-V3 CNN 2018 88.03 % Real-time

TimeSformer 2021 85.0 % 2.46 s (FF)

ViViT 2021 83.9 % 2.43 s (FF)

Pose-recognition CNN 2015 89.4 % 1.8 s

2-phase DL Model 2016 77.8 % Real-time

RL for manipulation 2018 90 % (folding) 24h

Deformation Models

Volumetric Approach 2014 90 % (Shorts) 0.22 s

3D DLO Shape detection 2021 2.8 pixel error 0.2 s

Clothes state recognition 2009 81.5 % 5-20 s

Model-driven clothes state estimation 2002 72.41% NA

Considering a continuous perception of dynamic interactions focusing on the
material and shape of a deformable object as it is being interacted with can be useful
when trying to understand said object for classification purposes [30]. In [30] the
research team adopts a framework inspired by [41] and [22].

The work in question presents and demonstrates a continuous visual perception
approach for deformable object classification while a robot picks and observes how
the object in question changes over time. The team extracts visual features from 2.5
D images in consecutive frames to learn a temporal-consistent representation of the
dynamic attributes present in a particular piece of clothing.

First, the object is placed in a random configuration on a flat surface where a
robot grasps it to observe its physical deformation. Different views of the object are
utilized (egocentric and exocentric). This implementation was evaluated using two
clothing databases with it working well for highly deformed garments. It obtained an
accuracy of 66.7 percent among five categories, having an increase of 39.4 percent of
classification score when considering other current approaches to clothing perception
and recognition.

6 Context-Awareness and Multi Sensor Data Integration

Context-awareness in robotics and computer vision systems indicates that the systems
that have this characteristic have a certain degree of knowledge about their environment.
This knowledge is frequently obtained via a particular sensor such as a camera, a
proximity sensor, an RGB-D sensor among others. Typical parts of a context may
include the location, identity, activity and state of people, groups, and objects [38].

Physical variables can also be considered such as temperature and lighting. The field
of collaborative robotics is in fact reliant in context-awareness. For operations that
include collaborative robots and humans, context awareness must be timely in order
to keep a safe and efficient working environment.
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In [45], the research team suggests that visual observation of the motion of
human workers may provide useful clues about tasks that need to be performed, with
these having solid potential of being explored. Context awareness is also prevalent
in autonomous vehicles, where it plays a central role in maintaining not only the
safety of the autonomous vehicle and its occupants but also the safety of everything
and everyone outside.

In [37] an advanced driving assistance system (ADAS) [1] is proposed and
implemented with it being based on context-awareness of the environment that
surrounds the vehicle. Ontological context awareness ADAS represent a significant
advancement when compared to current systems, since these can use their context
regardless of having to meet certain conditions, such as for the street that the driver
is transiting to have lines.

Ontological ADAS also consider Mobile entities, static entities, and context
parameters [1]. In many cases additional sensors or functionalities are suggested as
would be the case with improving low-level object detection or better estimating road
conditions [14], as well as more safety centered approaches [39]. A great way in which
humanoid robots could acquire information about both their context and the state of the
deformable object is via multisensory input.

Tactile sensor implementations alongside visual sensors are some of the most
promising tactics regarding the understanding of deformable objects. For instance, in
[15] visual data is combined with tactile data coming from a GelSight sensor to estimate
when a slip may happen to a robot arm manipulating deformable objects such as fruits.
Similar ideas such as visual servoing complemented with additional sensor data are
explored in [20].

7 Conclusion

Advancements in the handling of deformable objects are being driven by a variety
of evolving approaches. The integration of deep learning techniques, such as
reinforcement learning, and the use of transformer models lay the foundation for
even better models that may come while already delivering solid results. Also, the
inclusion of multi-sensory inputs and context awareness will certainly improve the
results that humanoid robots will have in terms of managing and interacting with
deformable objects. There are still many challenges in the way but the stride towards
the understanding of deformable objects is not stopping.

The tracking and understanding of deformable objects is particularly important in
the development of robotics systems capable of working in unstructured industrial
environments. Expanding the capacity of robots to understand deformable objects in
this type of environments will allow for them to be utilized in more ample, novel
applications, while working in environments with non-ideal conditions [33]. Some
of the most significant models discussed in the review, based on criteria such as
performance, novelty, and impact are present in Table 1.
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